

Thank you for your interest in learning more about the Biliteral Cipher of Francis Bacon. I may be reached at melchior@houseblueheron.com if you have any questions, comments, or generalized plans for global domination.

This document is available via my website (http://crypto.houseblueheron.com/). I welcome your comments or questions.

Outline

○ Who was Francis Bacon?
○ Who was Francis Bacon, REALLY?
○ Foundation Ciphers
0 What is the biliteral cipher?
○ How do you en/decrypt a message using this cipher?
\bigcirc Potential uses \& modern adaptation.
○ References.

Before we can address the bilateral cipher itself we need to briefly touch on who Francis Bacon was, was not, and some of the factors around his life leading to his use of and development of secret writing.

As we will discuss, Bacon mentions several different categories of cipher before outlaying this particular system of writing. Most, if not all, of those systems were not inventions of Bacon but they clearly influenced his thinking and need to be addressed, at least in a cursory manner, to have a full understanding of how more complex systems, such as the bilateral ciphers work.

The second half of this document describes the biliteral cipher in detail and provides some simple examples of how to use it.

Who was Francis Bacon?

O English poly-math and nobleman.
○ Born 1561. Died 1626 (Pneumonia)
○ PROLIFIC writer

- Science
- Philosophy
- Religion
- Judicial

○ Leading figure in establishing the New World colonies \& some of Canada.

○ President of Rosicrucian fraternity \qquad

(22 January 1561-9 April 1626)

Bacon was, unquestionably, a person of note and renown. What follows are just a few of his accolades: appointed to the Queen's council (1597), knighted (James I-1603), Attorney General (1613), Regent of England (briefly in 1617), Lord Chancellor (1618), Baron Verulam (1618), $1^{\text {st }}$ Viscount St Alban (1621). Being a prominent member of both Elizabeth and James' courts he also published a tremendous amount of material. Much of it related to his work as a jurist, however, he also wrote at length on other topics such as: philosophy, statesmanship, science, and yes, cryptography.

Strong advocate of the scientific method, remember that that early 1600 was a time of tremendous growth in scientific thought. His writings on science and the power of direct experience. He is now thought of as the father of empiricism[1] (idea that knowledge comes from actually experiencing it with your senses) this is one of the foundational schools of thought in epistemology along with rationalism, and skepticism.

1) This is normally someplace I would put a citation but if you open literally any textbook on the topic of scientific method or philosophies you will find this kind of notation on Bacon. As such it is considered to be common knowledge within the field. I'm happy to provide direct references if you like. ()

Who was Francis Bacon, really?

○ Baconian theory holds that Francis Bacon actually wrote many, if not all, of Shakespeare's plays.

○ Why?

- To protect Bacon's station?

○ To protect Bacon's linage?

Mark Twain was on board, see essy ' Is Shakespeare Dead?’
Friedrich Nietzsche, see ""NIETZSCHE on the Shakespeare Authorship".'
"Orville Ward Owen and Elizabeth Wells Gallup: Owen's book Sir Francis Bacon's Cipher Story (1893-95) claimed to have discovered a secret history of the Elizabethan era hidden in cipher-form in Bacon/Shakespeare's works. The most remarkable revelation was that Bacon was the son of Queen Elizabeth. According to Owen, Bacon revealed that Elizabeth was secretly married to Robert Dudley, Earl of Leicester, who fathered both Bacon himself and Robert Devereux, 2nd Earl of Essex, the latter ruthlessly executed by his own mother in 1601.[15] Bacon was the true heir to the throne of England, but had been excluded from his rightful place. This tragic life-story was the secret hidden in the plays.

Elizabeth Wells Gallup developed Owen's views, arguing that a bi-literal cipher, which she had identified in the First Folio of Shakespeare's works, revealed concealed messages confirming that Bacon was the queen's son."

- https://en.wikipedia.org/wiki/Baconian_theory_of_Shakespeare_authorship

Narrow the Beam

Francis Bacon $(1561-1626)$
Advancement of Learning
(1605)
Book 6:
Speaking and writing
Ciphers
Biliteral
Cipher
$(1576-9)$

OK. Now that we know a little bit about who Francis Bacon was and the circles he moved in we will narrow the focus of the discussion to that of the specific cipher in question.

We will/have discussed the person, his seminal work, touch on the chapter of interest, then focus in on both the ciphers and the specific ciphers of interest.

Then we will narrow in on the biliteral cipher itself.

Here we have the frontispiece and dedication page from the 1640 edition of The Advancement of Learning. The 9 books contained within cover a wide range of topics in philosophy, science, courtly behavior, etc but Bacon wastes no time letting us know that we are working in a world of codes. For example: each of these pages contains 287 characters. Likewise, page 287 ("mis-numbered" as 215) also contains 287 characters. Using the Kay cipher, to be discussed in a few more pages, 287 is the value of 'Fra. Rosi. Crosse.'

This is a fairly typical example of how Bacon is believed to hidden messages throughout his works. It is my personal opinion that early researchers of Bacon suffered a degree of cognitive awareness bias. In brief: humans have amazing pattern matching computers inside our skulls and once we have a precomputed 'model' of what to look for we are much more likely to be aware of it.

Libre 6: Time to talk ciphers

○ Wherefore let us come to Ciphers. Their kinds are many, as Cyphars simple; cyphars intermixt with nullous, or non-signification characters; cyphers of double letters under one character; wheele-cyphers; Kay cyphars; cyphars of words; and others. But the virtues of them whereby they are to be preferred are three: that they be ready, and not laborious to write; that they be sure, and lie not open to deciphering; and lastly, if it be possible, that they may be managed without suspicion.

- Libre VI, p 264

In modern language this reads:
Now let us speak of ciphers. There are many kinds of ciphers: simple, intermixed with null or un-used characters, where single characters take the place of multiple characters, wheel ciphers, kay cyphers, ciphers of words themselves and many others. There are three things that make a good cipher: ready \& easy to write, strong, and clandestine.

Bacon's Referenced Ciphers

O Numeric Ciphers

- Simple

○ Each letter is represented by its numeric position

- Reverse

○ Each letter is represented by the 'inverse' numeric position.

- Kay'd (later referred to as "keyed")

○ Index values are offset and additional characters are added
○ Mechanical
○ Wheel ciphers
○ Of words, or gramattical,

- Biliteral, gramar cipher : this is the system that he describes in his work.
https://en.wikipedia.org/wiki/Bacon\'s_cipher
Later editions refined this method, expanding the alphabet and such, but the basic idea is the same.

Yes the letters are in plain sight but you still need to know the mechanism of decipherment.
$K=10 \ldots Z=24, \&=25$, et $=26, A=27, I / J=35$
Numeric ciphers have been around since at least the ancient kabbalists used such systems to calculate the names of angels and such (see atbash \& gemateria)

Qualities of a ciphered grammar

○ Ready \& Easy to write
○ 'Sure' : repeatable, consistent, and strong
○ Clandestine
\S Wherefore let us come to Ciphers. Their kinds are many, as Cyphars simple; cyphars intermixt with nullous, or non-signification characters; cyphers od double letters under one character; wheele-cyphers; Kay cyphars; cyphars of words; and others. But the virtues of them whereby they are to be preferred are three: that they be ready, and not laborious to write; that they be sure, and lie not open to deciphering; and lastly, if it be possible, that they may be managed without suspition.

Simple Cipher

○ $\mathrm{A}=1 \ldots \mathrm{Z}=24$
○ Remembering that I / J and U / V are single values.

○ A T LANTIA
ค 119111131991

A	B	C	D	E	F	G	H	I/J	K	L	M
1	2	3	4	5	6	7	8	9	10	11	12
N	O	P	Q	R	S	T	U/V	W	X	Y	Z
13	14	15	16	17	18	19	20	21	22	23	24

We see this outlined in detail in Johannes Trithemius's 1499 work Steganographia, being the first part (prelude?) Of Polygraphia, the first work published in the west to be dedicated to cryptography.

Reverse Cipher

○ $A=24 \ldots Z=1$
○ Remembering that I / J and U / V are single values.

- A T L A NTI A

ค 24614241261624

A	B	C	D	E	F	G	H	I/J	K	L	M
24	23	22	21	20	19	18	17	16	15	14	13
N	O	P	Q	R	S	T	U/V	W	X	Y	Z
12	11	10	9	8	7	6	5	4	3	2	1

The modern 26 character alphabet works just fine using this technique

Kay'd Cipher

A	B	C	D	E	F	G	H	I / J	K	L	M	N
27	28	29	30	31	32	33	34	35	10	11	12	13
O	P	Q	R	S	T	U / V	W	X	Y	Z	\&	ET
14	15	16	17	18	19	20	21	22	23	24	25	26

Notice the use of the two extra characters.

1466 - Alberti, cipher disk

○ 'Tattati in cifra'
○ Polyalphabetic cipher
○ Remained unbroken until the 1800 s
○ Confederates used this same tech.

"Wheeled" ciphers, as described by Bacon were described in detail by Alberti. This is a mechanism for encoding and decoding based on offsets, or in this case the rotation of alphabets, physically, withinthemselves.
http://www.recursive.nl/papers/telematica.html https://cryptome.org/jya/cydisk.htm

Primary Source (1605 - Latin)

https://archive.org/details/dedignitateetaug00bacguat
De_augmentis_scientiarum.pdf
Alphabeti Biliterarii
Libre VI

Primary Source (1640 - English)

https://archive.org/details/ofadvancementp00baco ofadvancementp00baco.pdf
Libre VI

- 257 (375)

What is the Biliteral cipher?

○ Also called the Baconian Cipher
○ Created while Bacon was in Paris (1576-1579)

- 'The Proficience and Advancement of Learning Divine and Humane.' (1605)

○ Stegonographic method... :-/:->
https://en.wikipedia.org/wiki/Bacon\'s_cipher
Later editions refined this method, expanding the alphabet and such, but the basic idea is the same.

Yes the letters are in plain sight but you still need to know the mechanism of decipherment.

A quick note on binary

○ "for the transposition of two letters by five placeings will be sufficient for 32 Differences, [...]"

ค A 5 bit binary number
-) $11111=$

- $16+8+4+2+1=$ - $31+1$ (zero)

O So, while he did not present it as a mathematical system he clearly understood the mechanism and so beat Leibniz to the creation of 'binary' by 100 years.

It's not necessary to fully understand binary math, as will be discussed later, however this is the system used to define the cipher 'space' so it's worth a quick refresher.

Cheat Sheet

Letter	Script Pattern	Binary
A	aaaaa	00000
B	aaaab	00001
C	aaaba	00010
D	aaabb	00011
E	aabaa	00100
F	aabab	00101
G	aabba	00110
H	aabbb	00111
I, J	abaaa	01000
K	abaab	01001
L	ababa	01010
M	abbaa	01011
N	abbab	01100
P	abba	01101
R	abbbb	01110
S	baaaa	01111
T	baaba	10000
U V	baabb	10001
X	babaa	10010
Z		babab

This chart shows the letter to be enciphered, Bacon's code (which can be read as 'use alphabet $a, b, a, a, a)$ and the binary representation of those alphabets.

Bacon is credited in some circles with the first binary system, as you can see using the above chart. Gottfrid Leibniz, however, is officially credited with the popular base 2 system as he is the first to publish it as its own counting system (1689) in 'Explication de I'Arithmétique Binaire.' Parallels are then drawn through the I Ching, which is a long story and worthy of its own time and place.

It is suffice to say that while Bacon made use of the binary system described here he did not acknowledge it as its own system of counting or arithmetic.

How does encryption work?

○ Convert letters into binary representation.
O Find a new message of equal length to the total number of characters in the binary representation.

○ Use a different type for the 'Ones' and the 'Zeros'.
○ $\mathrm{A}=$ aaaaa : $\mathrm{A}=00000$: coder
○ $\mathrm{B}=$ aaaab : $\mathrm{B}=00001$: coder
○ Run :: Down for the count.
O baaaa baabb abbaa : down for the count

Here I use a color as the first example. It's worth pointing out that the Owen Ellis theories heavily lean on the coloring of type in early printings of Shakespear. The second example uses another obvious set of types but this time the

How does decryption work?

○ Break the message up into groups of 5 characters.
○ Check the type of each character to determine is you have a 'One' or a 'Zero'.

○ Reestablish the 5 char 'chucks'
○ Reconstruct the message.
down for the count it is time to stay put now

As discussed in the intro.

Did you see it?

down for the count it is time to stay put now

```
down for the count it is time to stay put now
baaa aba abb abbaa aa aa abab aa aaaa aba bba
baaaa baabb abbaa aaaaa babaa aaaaa babba
run away
```


run away

baaaa baabb abbaa aaaaa babaa aaaaa babba baaaa ba abb abbaa aa aa abab aa aaaa ababba
Down for the count It is time to stay put now
Your excellency,

Thank you for the opportunity to meet with and avail ourselves of your ever wise council concerning the matter in \mathscr{P} via. \mathscr{W}_{e} are
best served by calm resolve and stability!

- Melchior zum graven W゚ off

This is an intentionally simplified example, similar to those found within Bacon's work. This message shows an outer message which is whole to the casual observer. I've broken the last passage out to make it easier for us to parse but Bacon goes to some length to point out that this system of writing should be done in such a way that it will not draw attention to itself from a casual observer.
Your exceffency,

Thank you for the opportunity to meet with and avaif oursefves of your ever wise councif concerning the matter in $\mathscr{P}_{\text {avia. }} \mathscr{W}_{e}$ are
best served by cafm resolve and stabifily!

$$
\text { - Mefchior zum grauen } \mathscr{W}_{\circ} \text { If }
$$

Did you notice that some of the letters in the final section of the message use a different script? This is what Bacon is referring to with the term 'bi-litateral'.

best served by calm resolve and stability!
 baaa abaabb ab baaa aaaabab aaa aaaababba
 baaaa baabb abbaa aaaaa babaa aaaaa babba

$R \quad \mathrm{~N}$ A W A Y!

Here we can see the characters plainly. First we identify the alternate script, as on the previous slide. Second we set a value of ' b ' for all characters that use the alternate script. Thirdly we re-assemble the 'bits' into groupings of 5 . Finally, each of those 5 bit groupings is converted to its clear-text, deciphered value.

Potential uses?

○ Hiding messages in Shakespeare, for one -
○ There is little modern value.
○ Simple and very efficient for period uses.

- Consider a calligrapher that switched a font for the 'a's and 'b's

○ Very well known in certain circles but would go largely unnoticed by the untrained eye.

Modern Variant

A aaaaab 000001	$\begin{gathered} \text { B } \\ \text { aaaaba } \\ 000010 \end{gathered}$		$\begin{gathered} \text { D } \\ 000100 \end{gathered}$	$\begin{gathered} E \\ 000101 \end{gathered}$	$\begin{gathered} F \\ 000110 \end{gathered}$	$\begin{gathered} \mathrm{G} \\ 000111 \end{gathered}$
$\begin{gathered} \mathrm{H} \\ 001000 \end{gathered}$	$\begin{gathered} \text { I } \\ 001001 \end{gathered}$	$\underset{001010}{\mathrm{~J}}$	K 001011	$\begin{gathered} \mathrm{L} \\ 001100 \end{gathered}$	$\begin{gathered} M \\ 001101 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 001110 \end{gathered}$
O 001111	$\begin{gathered} P \\ 010000 \end{gathered}$	$\begin{gathered} Q \\ 010001 \end{gathered}$	$\begin{gathered} \text { R } \\ 010010 \end{gathered}$	$\begin{gathered} \text { S } \\ 010011 \end{gathered}$	$\begin{gathered} \mathrm{T} \\ 010100 \end{gathered}$	$\begin{gathered} \mathrm{U} \\ 010101 \end{gathered}$
$\begin{gathered} \text { V } \\ 010110 \end{gathered}$	$\stackrel{\text { W }}{010111}$	$\begin{gathered} X \\ 011000 \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 011001 \end{gathered}$	$\begin{gathered} \text { Z } \\ 011010 \end{gathered}$	$\begin{gathered} 0 \\ 011011 \end{gathered}$	$\begin{gathered} 1 \\ 011100 \end{gathered}$
$\begin{gathered} 2 \\ 011101 \end{gathered}$	$\begin{gathered} 3 \\ 011110 \end{gathered}$	$\begin{gathered} 4 \\ 011111 \end{gathered}$	$\begin{gathered} 5 \\ 100000 \end{gathered}$	$\begin{gathered} 6 \\ 100001 \end{gathered}$	$\begin{gathered} 7 \\ 100010 \end{gathered}$	$\begin{gathered} 8 \\ 100011 \end{gathered}$
$\begin{gathered} 9^{\text {* }} \\ 100100 \end{gathered}$	\& 100101	$\begin{gathered} \text { Et } \\ 100110 \end{gathered}$	$\begin{aligned} & \text { Null } \\ & 100111 \end{aligned}$
\ldots	\ldots	\ldots	\ldots	...	\ldots	$\begin{gathered} {[63]} \\ 111111 \end{gathered}$

By expanding the cypher key space by just one character, from 5 to 6 we double the amount of space in our encipherment system from 32 to 64 . Remember that 11111 (bbbbb) is the binary equivalent of 31 and $111111(\mathrm{bbbbbb})$ is 63 . Remember that the 0 value adds 1 to each set so the actual space is 32 and 64 . In this case the zero value 000000 (aaaaaa) is simply a null value. If one were to choose to not extend the system beyond simple letters and numbers the space of 36 makes a convenient perfect square. Using a 7×7 square provides for all numbers and letters with 13 additional positions to use for words, special characters, or entropy.

Bacon makes specific reference to the number of 'spaces' available within the set for 'differences' being 32 so it is clear that this was a binary representation and so the extension of a single bit is wholly compatible with his approach.

Research Resources

0 http://www.stringpage.com/other/crypto.html
0 http://ethw.org/Cryptography
O http://www.liquisearch.com/history of cryptography/medieval cryptography
0 http://www.divini.net/tlm3/products0708/mathspedia/it/cryptography.pdf
? https://aethelmearcgazette.com/2015/04/20/crypto-what-now-decoding-medieval-manuscripts-a-research-guide/
0 http://www.faqs.org/espionage/Cou-De/Cryptology-History.html
○ http://cryptowiki.net/index.php?title=Classical cryptography: experience an d_lessons

0 http://www.rictin.com/a/bacon-cipher/

The resources listed above are internet focused to make the information easy to find. These sources are not always the best option, however, so if you are interested in learning more about this form of cipher then I would like to recommend you to the following works.

Bacon, Francis (1605). The Proficience and Advancement of Learning Divine and Humane.
Bacon, Francis (1640). Of the Advancement and Proficience of Learning. Translated by Wats, Gilbert. Oxford University. pp. 257-271.

Donnelly, Ignatius. (1888). The Great Cryptogram. Chicago: R. S. Peale \& Co.
Dupuy, Jr., Paul J. "The Advancement of Learning". An Authorship Analysis - Francis Bacon as Shake-speare. London: Shake-n-Bacon. Chapter 1. Archived from the original on 2017-03-18. Retrieved 2017-03-18.

Eriksen, Kjell (Producer), \& Friberg, Jørgen (Director). (2009). Shakespeares skjulte koder Sweet swan of Avon [Television series DVD]. Norway: Videomaker.

Friedman, William F. \& Friedman Elizabeth S. (1957). The Shakespearean Ciphers Examined. Cambridge: Cambridge University Press.

Gaines, Helen Fouché, Cryptanalysis: a Study of Ciphers and Their Solutions (1989), page 6]

Gallup, Elizabeth Wells. (1899). Biliteral Cypher of Sir Francis Bacon.

Hall, Manly Palmer. (1928). The Secret Teachings of All Ages.
Kahn, David (1996). The Code-breakers (2nd ed.). New York: Scribner. pp. 882-888. ISBN 0-684-83130-9.

Loe, Erlend \& Amundsen, Petter. (2006). Organisten. Oslo: J.W. Cappelens Forlag.
Nate E. Shebell. (2012). Petter Amundsen, Oak Island and the Treasure Map in Shakespeare Part I. wordpress.com.

Owen, Orville Ward. (1893-5). Sir Francis Bacon's Cipher Story. Detroit: Howard Publishing. Tingstad, Richard. (2010). Summary of most convincing Bacon ciphers in Shakespeare. rictin.com.

Biliteral can mean: "written in two different scripts", Oxford English Dictionary

