Cryptography Compressed

By Melchior zum graun Wolf (Kevin Baun)
Prior to his death, in July of 1572, Sigismund II managed to broker an uneasy peace between the Catholics and Protestants. He also oversaw the Union of Lublin in 1569 which united Poland and Lithuania. After his death this void of leadership lead to considerable intrigue between the Vatican and various claimants. Catherine de Medici waged a campaign and eventually succeeded in gaining the approval of the Vatican for her son, though they initially supported other parties, and so Henry of Valois was elected as King of the Polish-Lithuanian Commonwealth in 1573. Henry, however, being displeased with the court politics of his mother and former tutor, Jean de Monluc (Bishop of Valence), signed the Henrician Articles which gave Poland's nobility the right to elect its own monarch and, upon the death of his brother Charles IX, he returned to France to be crowned Henry III (Leighton, 1969).

The correspondence documents of Antonio Maria Gratini, specifically a letter from the period between Henry's election and his arrival in state, secretary to Cardinal Commendone, papal nuncio to Poland, discuss a wide variety of topics and outline a network of sources ranging from Paris to Constantinople to Moscow. These writings are decidedly political in nature but touch on nothing that would not have been public knowledge. One entry of particular interest is a reference to 'un poco di cifra', which is a separate page included with Antonio's letter and consisting of a long series of cipher numbers and symbols. This numeric cipher aligns with numerals in the plaintext letter but the key is not included. This cipher, seemingly a common numeric substitution cipher, would go on to keep its secrets for nearly 400 years.

 3ilgus85"968191772315372 uns571396casy 751777134135137797

S3ItLS 751553771577752986375811772941835317195477171737851579
qٔ1337以 157475177913777519571759172597135913597419775751737 177753112541751511992959179153359153717 i215791999479555y77
 33 5994447592379177946137732t5

 $133735257917771 \mathrm{~g} 7 \mathrm{~g} 13855 \mathrm{~g} 139 \mathrm{~g} 255 \mathrm{~g} 17 \mathrm{Lg} 75133710 \mathrm{~g} 711137713 \mathrm{z7} 7519$ $7517308153 g 155 y 37159 g 2 g 177710841+32915508 g 77 y 555 g 17 n+397$ ig

un poco di cifra, (Gratini, 1573)

Attempts to decipher the code revealed that the numeric sequence is composed of digraphs, a few trigraphs, and even fewer monographs. The last of which includes an inverted 4 with a dot over it, unique among the substitutions. Analysis began by looking at common cryptographic systems of the time. The most common of which was the family of nomenclature ciphers. Nomenclature ciphers use a mix of monoalphabetic and code list substitutions for common words or phrases. These ciphers are known to be in use in the Italian states and by Papal Cipher Secretaries (such as the Argenti) since before the 15th century and significantly increased in complexity over time and eventually taking on complicated multivariate systems. These cipher systems remained in use well into the 16th century.

Common features of these ciphers include: use of nulls, lack of punctuation, no doubling of consonants. Using this as well as the knowledge that '[during this period] only [such] simple ciphers were used for papal communications in Poland, Sweden, and Germany' (Meister,1906) the cipher may be more thoroughly analyzed. Working under the premise of a simple (multivariate monoalphabetic non-affine) cipher the enciphered text may be evaluated using crypto analytic methods of the period, namely frequency analysis and relative comparison with similar ciphers of the period.

Papal ciphers of the $\mathbf{1 5 5 0 - 7 0}$ s, in use

The Gratini cipher mingles several important techniques of substitution ciphers. Substitutions are performed with multivariate mappings, the letter A can be represented by 5 or 15, for example, as well as whole 'term' substitutions. This technique of replacing words, concepts, or common phrases with a single entity is known as a nomenclature cipher and was extraordinarily popular throughout the period. We also see the introduction of nulls to thwart attempts at cryptanalysis as well as the removal of repeating consonants. All these factors helped this code to keep its secrets for hundreds of years.

Fortunately, a similar nomenclator furnished to Cardinal Commendone when he was nuncio in Poland in 1563-1565 was discovered and cracked. The construction of that cipher is very similar to that found in the papers of his secretary, Gratini. Similarities include the numeric system for polyalphabetic substitution as well as a detailed nomenclature. Indeed, the direct alphabetic substitution appears identical so it is likely that these ciphers have a common origin.
[1563-1565] Cifra con mons. Commendone nuntio in Polonia. null 4

Important things to notice are that each value ends with an odd digit: 1,3,5,7,9. Most even values are used for nomenclatures, though there are exceptions. For example, 10 maps to 'Cardinal Varmiese' and 20 maps to 'Regina'. Vowels are assigned 3 substitution values to obfuscate their frequency and are the delimiters for incrementing the least significant digit while the most significant digits are incremented in a columnar fashion. Additionally, some of the 3 character mappings also apply to longer substitutions (Gaines, 1956).. 609ヶ maps to 'Duca di Baviera', for example. There are more than 100 known nomenclature values for this cipher.

109919 ל 2569721 ל 327876094
Cardinal Varmiese to arrive in Duchy of Baviera.
Once Gratini's cipher was identified to be using a variant of the 'Commendone' the bulk of the message could be decrypted and, most, nomenclature entities identified through historic context (Meister, 1906). Again, keeping in mind that that the actual decipherment of the Antonmlri cipher didn't occur until the 1950s (Leighton, 1969; Khan, 1996).

A novel variant of 16th Century Papal Ciphers used in Germany and Poland

Using the systems outlined above, providing our own nomenclature, and extend the alphabet, we can create a unique cipher that is based entirely on period sources and structure. I will begin by assigning the possible value sets to the alphabet in use. This will be extended with a series of null values which will be randomly assigned within the cipher text. I have chosen to use common mathematical symbols for my null values as a means to thwart analysis. Finally, a nomenclature of common words and phrases is defined. The process of encryption is as follows: nomenclature, removal of repeating consonants, character substitution, random assignment of nulls. The resulting cipher key is shown below.

Substitution Cipher Key

Example Nomenclature

Atlantia	20	message	70
cipher	30	and	80
secret	40	It is	90
King	50	war	100
Queen	60	science	10

References:

Bauer, F.L. (2002). Decrypted Secrets: Methods and Maxims of Cryptology. Springer.
Gaines, H. F. (1956). Cryptanalysis; a study of ciphers and their solution. New York: Dover Publications.

Holden, J. (2017). The Mathematics of Secrets: Princeton University Press.
Kahn, D. (1996). The codebreakers: The story of secret writing. New York: Scribner.
Leighton, A. (1969). A Papal Cipher and the Polish Election of 1573. Jahrbücher Für Geschichte Osteuropas, 17(1), neue folge, 13-28. Retrieved April 20, 2020, from www.jstor.org/stable/41044190

Meister, A. (1906). Die Geheimschrift im Dienste der papstlichen Kurie.

1197371097109154866119191197323492319498723 1943227231175519179156323101191119195519117 1097752379119732331158712319432610955197523 1097211973231092355179711910119437117431979 107151197191171197371091171945872310955723 11755235115109231074987191012375451015010972 64109431979731117757923751091943101231579109 51711973711719179119710723492379719751943 109119175101877312310972431979119111723109 512379231071575237287191091191931237911973 2310911979231176311973194315481197323109119 1751011943261091575751091191919179671171951 8723756323194311973231095572311755231097223 117797557323109191791117752379109119727117 6319431197323233123117119109119731511911973 2310171174387123117552375

792310949235511943187871011072387557371979 121110763791512311751198743

This is a secret message to the people of Atlantia. I encourage you to consider the value of ciphers, codes, and the security of information. This noble science was employed by kings and queens for hundreds of years within our time-period of study. Lives and fortunes were made and lost over the strength of a secret. The study of ciphers adds to our knowledge of the sciences and enriches our understanding of the events that they influenced

- Respectfully Melchior zum grauen Wolf

Simple programmatic implementation, encoding

```
<script>
// This small script performs the multi-variant & whole word
// replacement for a given string.
var strOrg = "String to encode";
var str = strOrg;
function getRando(inputArray){
    var randVal = inputArray[Math.floor(Math.random() * inputArray.length)];
    return randVal + " ";
}
str = str.toLowerCase();
str = str.replace(/atlantia/g,"20 ");
str = str.replace(/cipher/g,"30 ");
// ...
str = str.replace(/war/g,"100 ");
str = str.replace(/science/g,"10 ");
str = str.replace(/a/g,getRando(["5","15","25"]));
str = str.replace(/b/g,getRando(["35","45"]));
// ...
str = str.replace(/y/g,getRando(["91","101"]));
str = str.replace(/z/g,getRando(["111","121"]));
document.write(strOrg);
document.write("<br/><hr/><br/>");
document.write(str);
</script>
```

